Monday, June 19, 2006

A Slim Chance for Solar Energy?

Such is the explosive growth of the solar power industry that manufacturers of polysilicon, which is moulded into a long ingot and then sliced into thin wafers for solar cells, can't keep up with demand for it. It appears that new supplies are not due to come on stream until 2008, and meanwhile the price of polysilicon has tripled in the past two years and could continue to rise. In the light of this circumstance, it is of interest to look over a few figures and facts about what might be extracted from sunlight, and on what scale this could be achieved. Indeed, is a solar economy possible?
The solar radiation flux (sunlight intensity) at the top of the atmosphere is 1,400 W/m2, but some of this energy is absorbed by the atmosphere as the radiation passes through it. At the equator, at sea level, and at noon on a clear day, the solar flux reaching the earth is attenuated to 1,000 W/m2. If the performance of the solar cell were perfect (i.e. 100% conversion of radiation to electricity) an electrical output of 1,000 W/m2 (i.e. kW/m2) would be obtained. However, the actual output is nearer 100 W, i.e. 10% efficiency. Undoubtedly, the technology will improve, and there are fuel cells in research labs that can generate electricity with an efficiency of more than 30%, but 10% is a reasonable figure for a commercial solar cell at present, so we will work with this. In the U.K., however, an average value for the received solar flux is nearer 150 W/m2, which at 10% efficiency means 15 W/m2.
This is of course during the day only. At night, the power output drops essentially to zero. In the early morning and late day, more of the sun's energy is absorbed by the atmosphere; clouds also reduce the power, and so the actual output is highly dependent on the weather conditions and hence the emphasis on finding ways to "store" the electricity produced by photovoltaic technology.
To get some rough numbers and a scale of what is required, let us consider generating capacities for the U.K., the U.S., China and the world as a whole, and hence the area of photovoltaic solar panels required to meet these outputs.
According to "The World Factbook (2003)", in that year the U.K. generated 360.9 billion kWh of electricity. Dividing by the number of hours in the year, this amounts to a generating capacity of 360.9 x 10*9 kWh/8760 h = 41.2 GW (41,200 MW). Hence, we would need:
41.2 x 10*9 W/ (15 W/m2) = 2.74 x 10*9 m2 of solar panel area to generate it. Since 1 square kilometer (km2) = 1 million m2, this amounts to 2,747 km2, which is only 1.2% of the total land area of the U.K. mainland (230,000 km2).
For the U.S., the total is 3.717 trillion kWh = 3.717 x 10*12 kWh/8760 h = 425 GW.
China generated 1.42 x 10*12 kWh/8760 = 162 GW.
And for the entire world, a grand total of 14.85 trillion kWh was generated, which translates to a generating capacity of 14.85 x 10*12/8760 = 1,695 GW.
The relative solar panel areas appear quite respectable. I leave the reader to work out the percentage of total area required for the U.S. and China, and confine myself to noting that for the whole world, 1,695 x 10*9 W/(15 W/m2) = 113,000 km2 is needed.
This is worked out on the basis of the U.K.'s sunshine and the area could be reduced considerably by placing the panels nearer to the equator, so probably, any solar-powered "local" electricity generating operation would be more efficient in the developing world, e.g. India, Africa, South America - China is more complex in terms of its climate.
Given that 30% of the surface of the Earth is land (i.e. not presently covered by sea - a value that might change if sea levels rise; although they appear to be falling in the Arctic for reasons no one understands), and assuming the planet to be a perfect sphere, we have a land area of:
0.3 x 4(pi) x r*2 = 0.3 x 4 x Pi x (6366)*2 = 153 x 10*6 km2.
This is a rough estimate made on the basis of a circumference of 40,000 km for the Earth, and hence a radius (r) of (40,000/pi)/2 = 6366 km.
Hence, we need "only" cover the earth to the extent of 113,000/153 x 10*6 = 0.07%, which doesn't sound much. Indeed, it corresponds to an area of about 300 kilometers by 380 kilometers, or 235 miles by 300 miles, which is almost exactly half that of the U.K. mainland. Not that I am suggesting we host the whole world's solar production capacity within these shores!
As noted, the sun only shines during the day, and we can expect a sizable output for, say, only 8 hours per day (on average: more in the summer, less in the winter). Therefore, some other means for providing our electrical power is necessary during the dark (night) period. Alternatively and in principle, we might have around three times the area of solar paneling ( 3 x 8 hours = 24 hours) to meet the total demand required, and store the extra in the form of an "energy carrier", either as electrons (batteries) or hydrogen.
If we need this energy in the form of electricity, then "electrons" stored in batteries would be the better bet, as getting electricity "back" from hydrogen via fuel cells would be overall less efficient.
How much silicon would be required to make the required swathe of solar panels? To estimate this, I shall assume that a silicon layer with a thickness of 200 microns (= 0.02 cm) is to be used (this is toward the "thin" end of the 180 - 350 micron range quoted in Wikipedia for solar cells).
The total required solar panel area of 113,000 km2 = 113,000 x 10*6 m2 = 113,000 x 10*6 x 10*4 cm2. This corresponds to a volume of 1.13 x 10*15 x 0.02 = 2.26 x 10*13 cm3 = 2.26 x 10*7 m3.
Assuming an average density of silicon of 2.3 tonnes/m3, this volume corresponds to:
2.26 x 10*7 m3 x 2.3 tonnes/m3 = 51.98 x 10*6 tonnes; i.e. about 52 million tonnes of pure silicon.
The manufacture of one tonne of silicon is reckoned to cause the release of 1.5 tonnes of carbon dioxide (Wikipedia). This, presumably, is reckoned on the basis of an overall mass balance as:

SiO2 (60) + C (12) --> Si (28) + CO2 (44).

From the ratio of molecular/atomic masses for CO2 and Si, 44/28, a value of 1.57 is obtained, in close agreement with the above estimate. However, since the reaction occurs at 1,700 degrees C, a considerable input of energy is required in the form of electricity to make the reaction "go", with an additional amount of CO2 being unleashed skyward. Indeed, it is estimated that 13 MWh of electricity is used to make one tonne of pure silicon. To make the 52 million tonnes of silicon required for our global solar programme would demand 6.76 x 10*11 kWh. We are not of course going to make it all in one year, and perhaps over twenty years would be more realistic. However, that still means making 2.6 million tonnes of silicon every year, a figure to be compared with the current 30,000 tonnes currently produced, and in factories that make up to 10,000 tonnes per year each (some are far smaller than this). Hence, for a start we need something like 100 times the number of silicon factories that we now have!

What about the power requirement for them? To arrive at a per annum estimate we divide the total 6.76 x 10*11 kWh by 20 years, which gives us 3.38 x 10*10 kWh, and is to be compared with the world total electricity production of 14.85 x 10*12 kWh.
Hence, for a twenty year silicon programme, we would need at this rate to increase the world's annual electricity production by just 0.23%.
Nonetheless, building the number of factories necessary to manufacture "pure" silicon on 100 times the scale of current production is simply breathtaking, especially given the difficulty of even meeting the existing demand. Taken with the acquisition of the silica "ore" and the production of charcoal at the necessary grade to make "solar grade silicon", along with the fabrication of the solar panels themselves, the whole enterprise would be a stupendous undertaking.
The message is clear that solar will never become a sole producer of the world's electricity, although it will become increasingly important for stand-alone applications, particularly in the developing world.
I am not anti-renewables - I emphasise this - not in the slightest way! However, as with my earlier calculations on wind-power and biofuels, I am pointing out the sheer scale and energy density of human demand on the planet, which is not readily supplanted by renewable sources of energy. My considerations here are only made over current electricity production. If we try to factor in how much provision, e.g. by solar, would be required to produce electrons or hydrogen to run the world's transport systems at their current and rising size, we could easily multiply the above estimates by a factor of three or four: i.e. Renewables offer us little comfort in the absence of energy efficiency, which must be our leading step forward; then we may be in with a slim chance.

The best option for photovoltaic technology is through the development of thin-film technology, which uses perhaps 1/100th of the amount of semiconductor material, but the task is still monumental on the grand scale, while more localised applications are thus favoured. Other means to capture solar-energy are through roof-based water-heater systems, which use the heat from the Sun's rays to heat water - and of course, good old fashioned photosynthesis!

98 comments:

Juan M said...

Chris, I think you are in a position to tell what the real energy balance of current PV panels is, I am posting this from Spain where currently there is a craze in installing PV panel farms. Myself I could be interested in buying a piece of a PV farm, but I have a healthy distrust on assuming that PV panels have a positive energy balance, there is not much information, y only have read that early on they had negative energy balance, and that of lately the energy balance is 4 (So the energy obtained from the PV panel during its life is 4 times the energy needed for the PV manufacturing).
Could you please give your estimate?

Professor Chris Rhodes said...

Hi Juan,

I have seen various estimates of the EROEI for PV, say between about 1 and 10, so as an average, 4 (I've read that one too) is probably reasonable? Producing enough silicon to really make a difference is one of the hard parts, but there is new technology e.g. dye-cells that might improve the situation for PV overall. However these are still very much at the research stage.

My wife and I considered the possibility of putting PV panels on the roof of our house but it was the cost that put us off, as we worked out it would take about 20 years to break-even on the outlay costs.

If other energy sources become increasingly expensive, e.g. gas, coal and oil (and nuclear) to make electricity, then you would break-even sooner and then be in profit for all the years following that the cells continued to work.

In terms of the environmental impact the situation is complicated. It takes resources to extract resources and if following the Peak Oil date, civilization "simplifies" and becomes highly non-technological, we might be better-off with mechanical devices like wind-turbines which could be adapted to grind corn!

But as an investment in a sunny part of Spain, I think you might do O.K. I'm not a financial advisor, but if you are interested in investing some money it might be fine. I would invest some cash there (probably)!

The upper limits of the EREOI for PV cells are always made by those who have a vested interest in them, and there are many web-sites that think it is not the best kind of technology - but having made the investment to set up a vast bank of PV cells around the world, as oil and gas (and maybe nuclear too, depending on how much uranium can be got) run out, it may be one of the world's greatest assets.

That's not a yes or no answer exactly, but what I'm saying is there are benefits just not quite to the extent some people may claim!

I hope that is of some help, at least.

Chris.

Juan M said...

Thank you Chris,

this has nothing to do with business, has to do with being part of the solution, not part of the problem. I do not want to engage in anything that is unethical even if it has a good ROI.

Seems to me that politicians and manufacturers got together to tell lies to the public and/or hide information. In Spain subsidy for PV panel production is 600% for everty KWh. So it kind of makes business sense. But panel are being installed in the worst possible area, in Navarra with little insolation. The world leader is Germany (not much sun there)



Googleing on EROEI I found this:



Ultimately there is only one way to definitively answer this questions: The bootstrap challenge. I have previously stated that when I see an ethanol plant that distills their ethanol USING ethanol (not natural gas or coal), then I will seriously reconsider the merits of that alternative energy source. Likewise, when I see a PV production plant that is powered entirely by PV, containing machines manufactured at plants powered entirely by PV, machines composed of materials mined, refined, and shipped entirely under PV power, etc., then I will believe that PV has an EROEI greater than 1:1. With an EROEI like 30:1, this should be no problem . . . so the fact that this is not the case is yet another argument, at least in my mind, that reality stands closer to the 1:1 figure

Nanook said...

There's nothing like numbers, but use of accurate numbers would be a good start.

It is worth noting that thin film and amorphorus technologies cut the amount of raw materials required to a small fraction of monocrystaline cells.

But I don't expect solar photovoltiacs will ever be the universal source of the worlds energy either, why should they?

There are alternate technologies such as solar chimneys which use thermal mass to allow them to keep generating through the night.

Given that they're just brick or concrete chimneys with a turbine, the technology involved is not complex.

Never the less I do expect photovoltiacs will make a much larger contribution than you envision.

Professor Chris Rhodes said...

Hello Nanook.

Constructive criticism is always welcome here, and so please tell me in what way are my numbers inaccurate, and suggest some alternative figures, whereupon I will write an updated article.

The purpose of this blog is to explore all possibilities regarding energy provision, so any rational input is appreciated.

Thin-film cells can use other materials than silicon - I agree that they are important in regard to consuming less resources than conventional cells do; that's the whole point of them, really - however, as I have discovered just recently, many of the raw materials are in potentially short supply, especially if new technologies are implemented which use them on the grand scale.

I think we will need all the renewables we can get as other energy sources begin to run-short. Dye-cells, eg. Gratzel cells with a dye-sensitizer and a TiO2 "hole-capture" medium are another possibility - there may be 200 years worth of TiO2 left at current rates of use, but less of course, if a new technology makes demands on it.

If you have more information/links etc. then please send them to me.

Regards,

Chris.

DantheMan said...

Very interesting figures!
Here's another figure:
6.76 x 10*11 kWh (Energy needed to make the 52 million tonnes of silicon required for our global solar programme)equals aprox 77 MW of generating capacity. (6,76 x 10*11 / 8760)
The worldwide energy consumption of the human race in 2004 was on average 15 TW* = 15 000 000 MW. * Source: Wikipedia "World energy resources and consumption". :)

Professor Chris Rhodes said...

Nice one, Dan!

So the amount of "electricity" required to make the 52 million tonnes of silicon should be no problem at all!

The main effort needed is to build those 100 or so x the present number of factories, new, to install the technology over say a 20 year period. A huge task, however, but surely the world needs to start building them now.

Thin-film cells would reduce the amount of silicon (or other PV-material) considerably, and perhaps coincidentally by a factor of 100! However, to the best of my knowledge these are not commercially available?

Dye-sensitized cells also offer an improvement in the quantity of "mineral" material, i.e. TiO2, required so that is another possibility.

Regards, Chris.

DantheMan said...

Thanx for fast feedback!
The future of global energy is sunny, that's for sure!
However, I'd rather bet my money on CSP (in the Sahara!) than PV -read this interesting article!

http://environment.guardian.co.uk/energy/story/0,,1957908,00.html#article_continue

Have a sunny day! :)

Yordan Georgiev said...

Great post! You should add couple of charts and Diagrams since most of the fanatic renewables advocates are kind of mathematically illiterate ...

And yes Kirk, he could also add how-many tons of Thorium and all the metals needed for the LFTR's would be required to achieve the same goal ...

Professor Chris Rhodes said...

Hi Yordan,

I like to do the sums! The numbers are usually a bit staggering in their vastness however. Thin-film cells look good since they use far less and amorphous material and Quantum Dot cells if they can be brought to fruition promise up to 65% light conversion efficiency and need a lot less semiconductor material.

I don't know how the figures stack up for LFTRs, but as you say Kirk is likely to be the man to know.

Regards,

Chris.

Anonymous said...

The present temperatures in the Northern Hemisphere lead me to believe that the CO2 bogey will be annihilated. An increase of 0.002% in atmospheric CO2 will no longer be significant. Large investment in solar cells is not advised.

pulmonary disease said...

I agree that they are important in regard to consuming less resources than conventional cells do that's the whole point of them, really

Unknown said...

Hi Cris nice blog post. Still I am not sure on the energy balance for Silicon, some one at one conference said that energy balance of silicon is negative ( what ever energy is consumed in producing a unit of silicon is more that that it would generate over its life). Do u hv any numbers on that, This would be pure science.

By now everybody would hv realised that single energy solution is hypothetical. So it would hv to be a portfolio of various kind of solutions.

What u hv said id right, efficiency has to precede these solutions. and demand management has to precede efficiency.

It is the human race which causing the demand to explode. the materialistic habit of consumption centric society has to go.

The whole marketing would hv to go. the concept of created need which is causing the consumption has to go.

no body knows whether the human race can be controlled or its' on the ways to dynos :)

But as long as we are there, as logicla entities, I can not fathom the fact that, if most of the energy in any form is from the radiation energy of sun and probably other bodies in the universe, tapping that source directly would be more sensible than waiting for millions of years for that energy to create fossile fules then spend hell lot of money and resurces t oextract them and then burn them to get energy and on the way screw up the planets natural system

Unknown said...

Solar energy is the best natural resource that we have this time even more that fuel is too expensive. In fact i want to approach costa rica investment opportunities and look all the alternative this country can have because it climate. We must to find the way to save our planet and to use solar energy could be the first step.

zhomeenergy said...

You'll first want to determine how many panels you will need.

Solar Hot Water

Unknown said...

Solar panels being used for many years now, but cost of production to have own solar powered generator at your own home typically very high but the efficiency low, making them largely ineffective source of energy.

Make solar panels

Unknown said...

Thanks for sharing...If your going to buy a Solar Panels, Make sure that the Solar Panels are in Good Quality and Affordable..

For more details visit:
solar power | solar energy | solar panels

Unknown said...

are solar panels affordable and easy to maintain? i am very much interested having my own solar energy at my house! Solar Power Queensland

Professor Chris Rhodes said...

On the personal level roof-based solar water heating systems are more efficient than pv panels.

Regards,

Chris

Anonymous said...

Chris, to be more realistic, did you consider the worlds production capacity of photovoltaic panels in squre meters? How is the relation of the production capacity to the demand you estimated? Can you estimate the correction to be necessary for the efficiency of the photovoltaic panels available today? Is there any potential to I crease the efficiency? How high is that?

I could probably do all the estimates myself, but my ambitions are not so high as yours. Please excuse me for challenging you and assume it as my respect to your competence.

Regards.
Mike

Professor Chris Rhodes said...

Hi,

this is an old one now! I did work it all out in square metres, and probably a 15% efficiency for standard solar panels might be obtained, at least when they are new. I took a modest 10% so maybe you could "downscale" the areas and materials by 1.5. For thin-film cells I believe the efficiency is about 8%, but this is an emerging technology.

The leaders in PV are Japan and Germany mainly because of earlier government subsidies. The present manufacturing output for solar pv is still minute compared to the full-scale demand.

Thermal solar power has the higher efficiency and there are major programmes in Portugal and Spain. There is also the DESERTEC project for generating solar electricity by thermal and some PV in north Africa to bring to Europe but that is still under development.

The article was mainly intended to be indicative since my impression is that most people are completely unaware of the amount of material and length of time necessary to implement "green" technology on a scale necessary to make any difference to our use of fossil fuels.

Regards,

Chris Rhodes

free viagra said...

Really great post, Thank you for sharing This knowledge.Excellently written article, if only all bloggers offered the same level of content as you, the internet would be a much better place. Please keep it up!

Anonymous said...

how are these numbers looking from 2014. muahahaha

Anonymous said...

I am very happy to read such a wonderful blog which gives the helpful information thanks for sharing this blog.solar panels cost

Unknown said...

No!Some estimates an increase of 10,000 pounds, put the average change in the value of your residential solar panels property.This is because of several reasons.
First, when anyone to buy a property, you will home solar panel kits receive the same benefits for you are installing a solar panel in the first place.Payment from the feed in tariff, will be paid to anyone to buy the property.solar panel for home Your property, if it is sold after the solar energy system, for this, for example, was on top of the 10 years of the roof, it's they are, know that you will receive from £ 850 per year £ 1,500 new set of people who wax purchase, tax is free, it is over a period of solar panels in the cause, since pay them, in the case of those in about £ 15000 solar panels worth more of 15 years , therefore they are not willing to pay a lot of property.

http://www.residentialsolarpanelsforhome.com

Unknown said...

They reason other of the main reasons it is possible to increase solar panels for sale the price of your property is that society has changed.Well, it is to save the environment, it is not becoming cool - longer it is felt seen as strange or a little odd to cut the recycling and your carbon footprint.Instead, it is buy a very cost of solar panels in many social circles that do not care about these things.Having a solar panel on your roof, is a brilliant way to show that you care about.
Finally, is not a big even ugly solar panel system!They start from about only 3-4 square meters, if they also solar panels cost new build, can be integrated with the roof tiles.

http://www.solarpowerpanelsystem.com

Residential Solar Energy Systems said...

Solar Power generation, also called optical or photovoltaic power generation, is the new clean energy developed all over the world with a promising future. The solar cell panel of the solar power generation system needs to change its angle according to the position of the sun to collect the solar rays and heat for a high generating efficiency.

Unknown said...

There are many benefits, advantages and opportunities in residential solar. We can benefit from it and at the same time we can make money too by selling it.
Make Money Selling Residential Solar from Home

Anonymous said...
This comment has been removed by the author.
Anonymous said...


I agree with you. Thank you for sharing the update. It is interesting to have it discussed widely so that we can gain more objective opinions.
Primavera P6 Training &P6 Training

Unknown said...

Go green with Solar Panel Installation in USA. SolarEnergyXpert is a top solar company providing reliable and affordable solar energy system in United States. Visit us today.

Anonymous said...

Articles and content in this section of the website are really amazing. Great ideas indeed! I will surely keep these in my mind!
Primavera P6 Training &P6 Training

Solar Las Vegas said...

The Solar Power is considered as the new energy for us and it is green power for the environment. We should encourage more people using it in the life.

Solar Albuquerque said...

When you install a solar photovoltaic system – an array of solar panels – on your home or building you’ll still receive electricity 24 hours a day, seven days a week, whether the sun is shining or not. You’ll also still receive a single electricity bill from your current electricity provider. The energy that is produced by the solar panels on your home or building will feed back into the electricity grid. You’ll be reimbursed for the energy your home/building produces on your electricity bill. 

Anonymous said...

I wanted to thank you for this great read.Thanks for sharing
Primavera P6 Training & P6 Training

Unknown said...

I thought it was going to be some boring old post, but it really compensated for my time. I will post a link to this page on my blog. I am sure my visitors will find that very useful.


Primavera P6 Sales

Unknown said...

This is a really good read for me.Thanks For sharing.
P6 Training

Alex said...

Articles and content in this section of the website are really amazing. Great ideas indeed! I will surely keep these in my mind!

P6 Training

mbc-solar said...

Great blogo.Thank you sharing information
solar raw materials

Unknown said...

I will post a link to this page on my blog. I am sure my visitors will find that very useful.Synergy Projects Consulting

mbc-solar said...

Nice blog
solar raw materials

boss said...


Your blog keeps getting better and better! Your older articles are not as good as newer ones you have a lot more creativity and originality now keep it up!
Primavera P6 Sales

Arnold said...

Thanks for this post, I really appriciate. I have read posts, all are in working condition. and I really like your writing style. Keep it up like. solar security light with motion sensor

robertsmith said...

Thanks for sharing a article it is really informative on solar energy Solar energy is the radiant energy emitted by the sun in the form of heat and light, which is received by the Earth.solar panels generate electricity from the sunlight in 4 different steps. It starts with the panels absorbing solar energy, which activates the PV cells to generate direct current (DC). The inverter at the back of the solar panel converts the unusable DC current into the usable alternating current (AC) that flows through cables and wires and reaches the meter. The electricity from the meter powers your home and runs all your electricals & appliances.


Linke blog said...

Very good article sir see also my blogs : -

floating solar panels

Best Solar Panels For Home said...

Thank you for sharing valuable information.

anuja said...

Thanks for sharing this useful information. very interesting and great thoughts. everyone is curious for using solar energy, so while buying solar panel buy affordable and best solar panel solar panel in gondia

Peter said...

What an awesome article! We all know now how helpful the solar energy is for leading our daily modern life. Without power supply we can't think of our days whether it's our home, business or even our vehicles and industries. In this precious post the author explained the issue very rational and authentic way. The content is amazingly rich with huge effective and knowledgeable data. As a Solar Energy learner I can say this is an extra-ordinary and high qualitative production by the genius author. Numerous thanks for this contribution.

Prashanth said...

Much obliged for sharing this informative article.
Visit us to know more about Solar Power Panels.....
Solar Panel Manufacturers in Chennai
Solar Power Systems

John said...

I spent some time on your post i get information about Estimate Solar Savings with solar panel this will help to generate electricity.

Zoe said...

tired of reading boring blogs, finally something interesting thankyou for bring something really happening.
vintage pillowcase crafts
outdoor pillow case
cheap throw pillow covers

Unknown said...

Amazing post and thanks for sharing. You can also know more about how do solar panels work and you can also get installation quotes online.

Anonymous said...

Fantastic blog i have never ever read this type of amazing information. Warriors Vest

Jobi said...

Fantastic blog i have never ever read this type of amazing information.
Axel foley jacket

Best Solar company in mumbai said...


for more articles

Meerconsultants said...

Nice article that you have shared here. Thanks for sharing this valuable article I like your way to describe your service here. If anyone interested to know more visit here:
Solar Panels Installation in rawalpindi

Somya Rai said...

Thanks for sharing a lovely blog, I get some better information about solar energy through your article. I hope you will share some more information about solar energy. Please keep Sharing.....!!

For more Details Click Here :
Solar Company in Kanpur

Sociolabs said...

I really enjoyed reading this blog. It was explained and structured with perfection; Best Digital Marketing Company in Delhi

Solar Light and Pump Manufacturer said...

Nice Post...


I'm having very interesting information regarding Semi Integrated Solar Street Light Manufacturers in India and Solar Water Pump Manufacturer in India

Meerconsultants said...

Really I am very impressed with this post. Just awesome... I haven’t any word to appreciate this post.
Solar Panels Installation in Rawalpindi

Alia parker said...

Great blog! Can I leave my solar panel attached to the battery while I'm drawing from the battery to run my trolling motor? Best solar

Solar Light and Pump Manufacturer said...

Very Nice Post...


We are having very interesting information regarding Solar Street Light Manufacturers in India, Benefits of Solar Street Light Manufacturers in India, All in one Solar Street Light Manufacturers in India, All in one Solar Street Lights working way! and Integrated solar street lights!

Nippon Energy said...

Thanks for sharing your best thoughts with us. I really like your article. Also, Visit at solar panel installation company in Orange County .

Home Services said...

PPC is a good way to measure the effectiveness of Internet marketing for your products and services, because clicks are an indisputable metric for performance evaluation. If the publisher produces valuable, relevant content, chances are that a reader will notice your link or banner and be motivated to click. Otherwise, it is probably time to try other publishers or a new advertising strategy.
https://ppcexpo.com/ppc

Rohan Singh said...

Amazing! The post is full of new information and ideas useful for the readers. Go ahead keep it up, being the leading mobile app development company, we are willing to introduce our specialized efforts in order to bring revolution in human welfare. iPhone application development company. You can email us at sales@appsquadz.com or call us at +91-9717270746

kilt said...

Thanks for sharing your best thoughts with us.
construction kilt
irish traditions annapolis
verillas reviews
21st century kilts
midlothian kilt hire
houston kiltmakers review
ian d murray bagpipes
kiltmaker inverness
kilts in austin
kilt hire west calder

QuickBooks xpert said...

Nice & Informative Blog !
Our experts at QuickBooks Customer Service Number give you immediate assistance amidst unprecedented challenges.

solar panel companies los angeles said...

Very interesting website it is. I saw many different posts here and all are very interesting and informative. | solar panel companies los angeles

Shawn Williamson said...

Good information Thank you for doing these calculations, and the results are very important for the solar energy industry. By the way, you mentioned in your article about polysilicon and if I remember well, then this is a material consisting of small silicon crystallites; it occupies an intermediate position between amorphous silicon, in which there is no long-range order, and single-crystal silicon. From a technological point of view, polycrystalline silicon is the most chemically pure form of industrially produced semi-finished silicon obtained by purifying commercial silicon by chloride and fluoride methods and used for the production of mono- and multicrystalline silicon.
I was able to gather this information from posts on Instagram in which the authors talk about solar energy and the materials that are used in it, there you can find more than a hundred many posts on this topic and almost always they are published by accounts with almost 60 thousand subscribers! Uvreden this is because the owners of such accounts are often buy instagram followers to increase their number.

Astrid said...

Wow, incredible blog layout! How long have you been blogging for? you made blogging look easy. The overall look of your web site is fantastic, let alone the content!
los angeles solar installer

Jon Hendo said...

Even if just as a hold-over from the expectations set by live in-person events Some events may be responsible for generating revenue. sample thank you email after meeting and motivational speaker bio

Adam Russell said...

You know so much about energy. Do you plan to create and lead instagram profile? You can use some tips how to do it from this article https://validedge.com/6-reasons-social-media-marketing-important/

Darko Bedricic said...

Well done!! The blog is so interesting to read. Solar energy is so important for now a days. Because by using the non renewable energy for the huge source of people might be affected for our next generation. For that solar-SV is the best choice for Beratung, Planung, Gutachten(Consulting,Planning,Expert opinion)

Thomas Labriola said...

Good information Thank you for doing these calculations, and the results are very important for the solar energy industry. I think you should record a podcast about your article and put it up in the soundcloud. And if you want to promote it, you can always use https://viplikes.net/ services in order to wind up the number of plays.

eddielydon said...

You can do very creative work in a particular field. Exceptional concept That was incredible share.
12th Doctor Red Coat

Jobi Johnson said...

Your article is such an informative article. It is glad to read such those articles thanks for sharing. Edge of Seventeen Jacket

우리카지노 said...

Your explanation is organized very easy to understand!!! I understood at once. Could you please post about 우리카지노?? Please!!


Solar Rooftop Calculator said...

Nice Information on Solar Energy and Appreciate the time and effort you put into your website and the in-depth information you offer. I would also recommend to know more about solar rooftop solutions. Thank you!

Yukinova said...

Yukinova is a Two Wheeler Battery Manufacturers in India. These products are highly demanded and appreciated by a number of clients owing to their optimum performance, hassle free working and longer functional life. Offered products are designed and fabricated by considering optimum quality components in accordance with the laid industry standards and norms. Moreover, our clients can avail these products Three Wheeler Battery, Traction Battery, Solar Battery from us at best price.

deanffranklin@gmail.com said...

Wow such a stunning substance I never analyzed this before keep it up and keep on providing for us more solid information. Really research this now mens bomber jacket and advantage it.

John Hicks said...

Good written article about mens bomber jacket

dev baker said...

What a great pdf editor? It consists of wonderful content which shows is attractive and relevant.ubuntu free pdf editor
Those who are super excited to see this article, then go and check what's new in this.

Meer Consultants said...

Amazing post thanks for sharing the post.Your blogs are admirable and full of knowledge.
Solar Panels Installation in Islamabad,

Meer Consultants said...

Very good Article..your presentation style is also good
Thanks for sharing
solar panels installation in rawalpindi

Jeffrey said...

If you look for an environment friendly or climate friendly energy source, I think solar energy is the best possible solution that can also help to reduce the home power energy cost too. Oh, let me say my hearty thanks for this wonderful update. You really made the solar energy issue very significant and meaningful. The authentic details with some great thoughts you elaborated in this post was extremely precious. Thank you very much for this amazing piece of quality job. Here I also would like to bring a focus about Solar panel cleaning service Sacramento, CA. Their solar panel cleaners are experts are professional, highly qualified, licensed and bonded. Their Goal is to reduce your energy bills while increasing your homes value with our state of the art solar panel cleaning. Our process from start to finish is seamless and professional. They truly look forward to helping you be part of the solar solution!

Dona125 said...


To keep our environment safe and natural and to the question of eco-freindly energy source I think solar energy is the best possible solution. It can also play a good role to reduce the home power energy cost too. Well, let me say my warm thanks for this conducive approach. You extremely made the solar energy issue very significant and noteworthy. The logical and acceptable details with some remarkable thoughts you spread over the page was extremely super valued and adorable. Countless thanks for this unique piece of quality produce. Here I also would like to draw an attention to Sacramento Solar panel cleaning service to take a look. Their solar panel cleaners are so experts and professional, highly qualified, licensed and bonded. Their dedication is to reduce your energy bills while increasing your homes value with the state of the art solar panel cleaning. Their process from start to finish is seamless, professional and sincere. They always look forward to helping you be part of the solar solution!

naina k said...

thanks for the info.......

High fiber foods

Simple Shine said...

house cleaning adelaide
restaurant cleaning services adelaide
external window cleaning services
carpet cleaners adelaide
solar panel cleaning services adelaide
high pressure cleaning services adelaide

Solar Engine said...

Love this post! This is a really good blog wish more people would read this, you offer some really good suggestions on Solar Energy Storage NSW. Thanks for sharing.

Nippon Energy said...

Great piece of information, Thank you for sharing the updated one..

residential Solar panel installation in San Bernardino

Solar panel installation in Los Angeles

websitesabq said...

This is a great article with lots of informative resources. I appreciate your work this is really helpful for everyone. Check out our website Best Seo Services Albuquerque for more **websitesabq.com** related info!

hastenchemical said...

"A Slim Chance for Solar Energy?" seems to be a provocative title that alluded to potential difficulties or barriers to the adoption of solar energy. It's crucial to consider innovative solutions and technologies, such as incorporating sustainable materials like cement kiln dust Miami, to overcome these hurdles and advance towards a greener future in places like Miami.

Charbonnel said...

Although the road may seem arduous, technological innovations and growing awareness of renewable energy offer bright sustainable prospects. Just as enjoying رقائق شوكليت (chocolate chips) can be a small but highly satisfying pleasure, the power of the sun is abundant and can provide great benefits to our planet.

Barber Shop said...

The solar power industry's growth is undeniably remarkable, mirroring the demand for excellence in every field. Just as innovation thrives, discover a world of rejuvenation with Facial Services For Men In Mississauga to keep your skin looking its best in this dynamic era. Embrace the power of progress!

global cfs said...

The solar power industry's incredible growth is reshaping markets. Just as the demand for polysilicon soars, remember that quality tile accessories are essential to ensure lasting solar panel installations.

Costume Style said...

Nice post! This is a very nice blog that I will definitively come back to more times this year! Thanks for informative post. Jackie Burning Love Tank Top

Anna Thomas said...

The rapid growth of the solar power industry is truly remarkable, highlighting the need for innovation in production. For innovative transformations, consider a leading fit-out company in UAE.







Robert Jon said...

Solar energy is undoubtedly the future of sustainable living! It’s inspiring to see how cities like Neubrandenburg are embracing renewable energy solutions. Photovoltaik Neubrandenburg plays a crucial role in helping households and businesses transition to clean, efficient, and cost-effective solar power. Harnessing the sun’s energy not only reduces environmental impact but also empowers communities to achieve long-term energy independence. A bright and green future is within reach